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EXPLICIT SOLUTIONS OF MULTIDIMENSIONAL
INVERSE UNSTEADY HEAT-CONDUCTION PROBLEMS

A. D. Iskenderov, Dzh. F. Dzhafarov, . UDC 536:24
and O. A. Gumbatov :

Explicit solutions are found of a number of inverse problems of determining the thermal con-
ductivity in linear and nonlinear heat transport.

The determination of variable thermophysical characteristics of media is one of the urgent problems
of contemporary thermophysics. Recently there has been a rapid development of the theory of multidimen-
sional inverse problems [1-5]. In these investigations great importance is attached to the development of
special methods which yield explicit solutions. These solutions can serve directly as a basis for experimen-
tal methods of determining variable physical characteristics of media.

We consider a thermal process described by the system

C, O Ti—vhix, HVT +ale, HT =Qx, y, 0, @
Tlizo = 9 (x, y), (2)
T'B,sz =0, T|I‘1X52 =[E y 0. (3)

If the quantities C, A, & Q, ¢, and f are known, system (1)-(3) canbe used to calculate the temperature
distribution T(x, y, t). Our primary problem is to determine the thermal conductivity A(x, t). To do this we
. supplement system (1)-(3) by the condition

oT

v ly=n

=7 (x, ), 4)

which is the expression for the temperatdre gradient on the plane y = 7, where 7 is a fixed point on the boun-
dary I'y. The coefficient \(x, t) is sought in the class of continuous and positive functions.

Questions of the correctness of problems of the type (1)~(4) were studied in [4]. We consider cases for
which the solutions can be found in explicit form.

We denote by w(y) the normalized eigenfunction of the operator —Ay corresponding to the eigenvalue
p >0, i.e.,
— Ao (y) = po (1), 0 @)y, =0, y€D, )

Ifm=1, D, = [0, 1], then w(y) = sin kay, p= k*%, where k is a positive integer. It is not difficult to indicate
the general form of the function w(y) for a number of other domains also.
We consider a thermal process in which the following conditions are realized:

a) Qx, ¥, t) = Qy(x, thw(y), ¢(x, ¥) = g(Xw(y), (&, y, t) =1 X (§, t) w(y), where Qy(x, t), @,(x), (s,
t) are given functions;’ .

S. M. Kirov Azerbaidzhan State University, Baku. M. Azizbekov Sumgait Branch of the Institute of Oil
and Chemistry. Ch. Il'drym Azerbaidzhan Polytechnic Institute, Baku. Translated from Inzhenerno-Fiziches-
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b) v(&, t) = fi(&, t) dw/ov (), y(x, 0) = @y(x) dw/Bv (n), £6 Ty, dw/dv(n) =0.

This condition is an expression of the compatibility of the input data of the problem, and it must be satisfied
in actual processes.

We multiply Eq. (1) by w(y) and integrate over domain D,.

Using the notation

Tot, = [ T g Doy,
D,
then

C @, ) Toy—vuh (¥, H) vuTo+ [BA(x, £) + a(x, HITy = Qo (x, 1). (7

After substituting (6), conditions (2)-(4) take the form

Toli=o = @0 (x)s Tolr, = fE 1),

TOEQ

=7v(x, f). '
5 vix, b (9)

y=n

it follows from (9) that

4 10
Ty (¥, ) =7 (x, 1) [%%_(n)] : .

If we substitute this expression into (7), we obtain

g, D ysr k(DY =D, 8, (11)
where

D )= Qb 922 ()=l D10 ) —Clx )ilx b,

Thus, we obta_i_n a first order partial differential equation for the function A(x, t). We seek the solution
of this equation for Dy =[0, 1]. Then (11) takes the form

— e (5 Oy, O F A, Y, 1) — Pas (5 B] = O (x, D). 12)

Hence it follows that the function A\(x, t) is uniquely determined only if its value is given at one point of
the interval [0, 1]. We assume that the function Yx(Xs t) vanishes only at the point x;¢€[0, 1]. Then we obtain
from (12)

Mty B) = D (%9, 1) (17 (o, &) — Y (For B (13)

The solution of Eq. (12) which satisfies (13) has the form [6]

%, X z (14:)
M, ) =exp| — | P@)def] [ R@exp [ P(D) dbjdz +1(x, B,
where '
P (Z) = [VZZ (Z’ t) — Wy (27 t)] [Vz (Z: t)]“&
R(z) =Dz, v (2, )Y 25,
The right-hand sides of Eqs. (13) and (14) are assumed positive, continuous, and finite.
In practice it is sometimes more convenient to replace (4) in problem (1)-(4) by the condition
15)
A QT— =q(x, 1),

ov ="

i.e., the heat flux density through the plane y = 7.
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We now consider the problem of determining the function A(x, t) from conditions (1)-(3) and (15).

After the substitution of (6) this system is transformed into the form of (7) and (8):

AT, o

=gq(x, 1. (16)
av g0 8

y=1

We have from (7) and (16)

1 —1
Ot )T ve 966 8 (Tog2 ) vl |+t 070 — @ 9 —vate 0] 5 0] an

Consequently, the function Ty(x, t) is the solution of the mixed problem for the quasilinear parabolic
equation (17) with conditions (8) and (9). We assume that q(x, t) > 0, dw/dv () > 0, @(x) > 0, and §; (£, t) >
0. These assumptions can be ensured experimentally, and some of these conditions are also related to the
compatibility of the input data of the problem. Then the tunction Ty(x, t) > 0, and from (17), (8), and (9) it
can be found exactly or approximately. Substituting the expression found for Ty(x, t) into (16), we obtain

hx, 1) =q(x, 8 [TO (x, t)—g‘ﬂ (n)r-

v

If the coefficient A(x, t) is given, the coefficient C(x, t) or o (x, t) can be found from system (1)-(4) or
from (1)-(3) and (15).

We present a special case of the inverse problem considered above. Suppose it is required to determine
the function a(t) which is continuous in [0, tob] and satisfies the equation

T,—AT +a(®)T =0, (x, {)€Q,. (18)
the initial and boundary conditions
19
Ty =), T, =0 19)
and the following supplementary condition
T
Tl =), 0=t <ter, (20)
v

where ¢(x) and v (t) are given functions. This problem is encountered in the study of the cooling of a body by
a stream of liquid or gas, varying the velocity or*temperature.

Let D; be a domain such that the Green's function G(x, t; £, 6) of the first boundary value problem for
the equation Ty — AT = 0 can be found in explicit form. For example, D; can be a half space, a sphere, a seg-
ment, etc. We make the substitution

t
vix, )y =T(x, t) exp{ S o (1) dr} (21)
0
into Eqs. (18)-(20), and after some simple transformations we obtain the following expression for the un-
known coefficient o/(t):

oG
aty — Lin L g i 0, 12, 09 ® d&. (22)
i y(t) J Ov
Dy
if in problem (18)—(20) we specify the condition (BT/BV)ITI = 0 instead of the condition T r= 0, then
instead of (20) giving the condition 2
(23)
T{n, ty="7()
we find for the unknown coefficient « (t) the expression
(24)

- d 1
-t . gz,
o () 7 n ) S Gy(n, t; & 0)(P(§). 3

D,
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TABLE 1. Comparison of Exact and Approximate Values of the
Thermal Conductivity

A

o | o1 o2 |03 os]os |06 ]07]0s8] 00

K(x; 0,5)
R(x; 0,5)

1,5
1,5

1,6
1,558

1,7
1,684

1,8
1,787

1,9
1,891

2
2,006

2,1
2,105

2,2
2,200

2,3
2,296

2,4
2,402

2,5
2,5

where Gy(x, t; &, ) is the Green's function of the second boundary value problem for the equation Ty — AT = 0.

In conclusion, we consider the inverse problem for quasilinear heat-conduction equations. In this prob-
lem we obtain an explicit expression for the coefficients being sought by using self-similar solutions of the
equation under consideration.

Suppose it is required to find the thermal conductivity A(T) > 0 when the following conditions are satisfied:

2
CT— T LN Tl = 0, 0<x < oo, 0<<EL L #5)
Tlimo =0, Theo = [, 0L < oo, 0<TELL (26)
Tleon = (&), $(0) =0, $loo) =1, (27)

Where C(T) > 0 and ¥(t) are given functions; n > 0, £ > 0, k = 0 are given numbers. In this problem AMT) is
sought in the class of positive functions which are continuous for T¢[0, f]l. For k = 0 Eq. (25) describes the
propagation of heat in a one-dimensional rod, and k = 1 and k = 2 correspond to spherical and cylindrical
symmetries.

Equation (25) for conditions (26) admits a self-similar solution [7], and from the maximum principle
there follows the estimate: 0 < T(x, t) = f. It is easy to confirm that Eq. (25) and conditions {26) remain un-
changed for the following transformation of independent variables: x' = mx, t' = m?t. Therefore, the function
T(x, t) must satisfy the identity

T (x, &) =T (mx, m?).

Setting m = (t7%)~1/2, we obtain

T =T (o #)T:w(nl);t_\)'

Thus, T (x, t) depends only on the argument x/nvt.
With the notation z = x/nVt, system (25)-(27) takes the form

) (28)
Pty (W) w,), = — —9»2‘.12() (@) w,, 0<Cz<C oo,
. (29)
w(0) = J, w(o0) =0,
©E) =), 0<z<oo. (30)
Suppose the following conditions are satisfied:
1) the expression
1 1.,
72‘(3—k) ~ t — =y (B+1) )
[P (B) ¢ | 3 0 C(y(8)) d9
4}
for ¥te[0, =] is a strictly positive, continuous, and bounded function;
2) (t) has the inverse ®(), defined on [0, f] with a range of values in [0, »).
Then the expression
SNCNE) ~ AL
M(T) = 020 (T) [D(T)] j Clev - du (31)
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is valid for the function MT). Here A(0) is understood in the sense of the limit of the right-hand side as
T—+0.

By integrating Eq. (28) in the domain (z, <) and taking account of boundary condition (29), we obtain

o (@w)yw, =

o] —

(s j' gric (w) wgdg.
Hence

M (w) = 2 [22%w,) 5 ?IC (w) wpdk.

Subst'ituting into this the expression for w(z) from Eq. (30), we find

.

P (E79) dE.

A (2‘2)):112[ 2Ly ) r S FHC (pEY)

.
2z

d?

oy

By setting ¢ = z=2, 0= £-%, the last equality can be written in the form

B ;oML (32)
M) =L T [ @I [0 % C () e (0) O,
0
The function ¥(t) has the inverse ®(). Therefore, we obtain from (32)

3=k B-1
bl

C (v)v,_ T do.

() = 10 () 10 (1)

b
Here y takes on all values in the interval [0, f]. Consequently, the validity of Eq. (31) is proven.
The analog of the inverse problem (28)-(30) was solved in [5] by specifying the condition T (x, top) = ¥(x)
instead of (30).

Numerical calculations were performed on the model examples. We present one of them. Suppose it is
required to find the thermal conductivity A(x, t) > 0 from the conditions

Ti—vh(x, §) yT == — (34 2t 4 2x)sinmy, 0<<x, y, t<<1,
Tlimo == x%sin Yy, Tlx—o = tsinny, Tye1 = (I + #) sinmy,
Tly—mo = Tly=1 = 0, ATy = (1 + x + #) (x2-+ 9).
Let A(x, t) be the exact value of the thermal conductivity and x(x, t) its approximate value found by substitut-
ing (17), (8), and (9) into Eq. (16). In this case A(x, t) =1 +x+t, w(y) = sin7y, wy(O) = 7. It follows from (16)
that

A By = (U5 x -k ) (@4 ) [To (s )1 (33)

- The function T,(x, t) is the solution of the problem

Tou— (g (x, 1) (aTe) *Tixye = — (3-+2x 4 20— g (x, 1),
Toli=o = %2, Tolxmo = ¢, Tols=1 =141

Solving this problem by the method of [7], we obtain an approximate value of the function Ty(x, t). If we sub-
stitute this value of Ty(x, t) into (33), we find A X, t).
Table 1 lists the exact and approximate values of the thermal conductivity Ax, t) for t = 0.5 and at the
nodes of the net {x: x + x;, x; = ih, h=0,i=0,1, 2, ..., 10},
NOTATION

t, time; ty,, observation time interval; Dy and Dy, domains in n-dimensional and m~dimensional Eucli-
dean spaces E, and Ey,, respectively; I'| and I';, boundaries; x = (X, X, ..., Xp) and ¥y = (¥;, ¥2» ---5 Ym)s
arbitrary points in domains D; and Dy; T, temperature distribution; C, volumetric heat capacity; A, thermal

782



conductivity; o, heat-transfer coefficient; Q, internal source strength; ¢ and f, temperature distributions at
beginning of process and on boundary of domain respectively; v, outward normal to boundary Ty; v, temperature
gradient; g, heat flux density; 7, fixed point on boundary Ty; D = D,XD,; Q = DX(0, tobls £ = D;X(0, topl.
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FINITE INTEGRAL TRANSFORMS FOR HEAT AND MASS
TRANSFER PROBLEMS IN NONSTATIONARY AND
INHOMOGENEOUS MEDIA

V. 8. Novikov UDC 536.2

Several boundary-value problems of heat and mass transfer are solved for equations with vary-
ing coefficients.

Integral transforms are widely used in solving transport problems, mostly described by equations with
constant coefficients. Important contributions in developing the method of finite integral transforms were
made by Grinberg [1], Tranter [2], the authors of [3-6], etc.

In the present study we construct finite integral transforms for several boundary-value problems of heat
and mass transfer, described by equations with varying coefficients. Kernels and norms of the transforms
and characteristic equations for finding eigenvalues are determined for these problems. In this case it is im-
portant to develop an approach to solving these equations, as suggested by the present author [7].

Consider the problem

a i) L oL O rvur)*az]ﬂ(f)cp(r) T g T+ W, 1), a
: ot ' or or or
R1<r<R2,[x<r)9f—+alT] — By 1),
ar r=R,
. @)
[h(r) £+a2TJ =By (),
or r=R,

where @, o, are constant, and ¥ = 0, 1, 2 are shape coefficients of the geometric region. We introduce the
notation

Ry .
f O @NT(r, Hydr =T (p, 1), ; (3
Ry ) P
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