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E X P L I C I T  S O L U T I O N S  O F  M U L T I D I M E N S I O N A L  

I N V E R S E  U N S T E A D Y  H E A T - C O N D U C T I O N  P R O B L E M S  

A .  D.  I s k e n d e r o v ,  D z h .  F .  D z h a f a r o v ,  
a n d  O.  A .  G u m b a t o v  

UDC 536:24 

Explicit solutions are found of a number of inverse problems of determining the thermal con- 
ductivity in linear and nonlinear heat transport. 

The determination of variable thermophysical characteristics of media is one of the urgent problems 
of contemporary thermophysics. Recently there has been a rapid development of the theory of multidimen- 
sional inverse problems [1-5]. In these investigations great importance is attached to the development of 
special methods which yield explicit solutions. These solutions can serve directly as a basis for experimen- 
tal methods of determining variable physical characteristics of media. 

We consider a thermal process described by the system 

C (x, t) Tt - -  V ~ (x, t) V T + ~ (x, t) T = O (x, y, t), (1) 

T[~=o = r (x, g), (2) 

Yl~,xr, = 0, Y l r , x ~  = f (~, g, t). (3) 

If the quant i t ies  C,  k, a, Q, a, andf  a re  known, systen~ (1)-(3) canbe  used to ca lcu la te  the t e r~pe ra tu r e  
d i s t r ibu t ion  T(x, y,  t). Our  p r i m a r y  p r o b l e m  is to  d e t e r m i n e  the t h e r m a l  conduct iv i ty  k(x, t). To do this  we 
supplement  s y s t e m  (1)-(3) by the condi t ion 

OT 
--: 7 (x, t), (4) 

which is the e x p r e s s i o n  for  the t e m p e r a t u r e  g rad ien t  on the plane y = ~, where  ~ is a fixed point on the boun-  
d a r y  F 2. The coeff ic ient  ~(x, t) is sought in the c lass  of continuous and posi t ive  funct ions .  

Ques t ions  of the c o r r e c t n e s s  of  p rob lems  of the type (1)-(4) were  studied in [4]. We c o n s i d e r  c a s e s  for  
which the solut ions  can be found in expl ic i t  f o r m .  

We denote  by  w (y) the no rma l i zed  e igenfunct ion of the o p e r a t o r  - A y  c o r r e s p o n d i n g  to the e igenvalue  
> 0, i . e . ,  

- -  hu(o (g) = ~ o  (g), (o (g)[r, = 0, g E D~. (5) 

If m = 1, D2 ~ [0, 1], then w(y) = s in  kuy, p = k2n 2, where  k is a pos i t ive  in teger .  It is not diff icul t  to  indicate 
the gene ra l  f o r m  of the funct ion ~(y) fo r  a number  of o ther  domains  also.  

We cons ide r  a t h e r m a l  p r o c e s s  in which the fol lowing condit ions a r e  r ea l i zed :  

a) Q(x, y,  t) = Qo(x, t)w(y), ~o(x, y) = ~Oo(X)w(y), f(~, y,  t ) =  fo • (~, t) ~(y) ,  where  Qo(x, t), ~o(x), fo(~, 
t) a re  given functi.ons; ~ 
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b) Y(r t ) =  fo(~, t) O~/Ou (r/), T(x,  O) = ~0(x) O w / O u ( N ) ,  ~ c g l ,  Ow/Ou(rl )  s O .  

This  condi t ion is an e x p r e s s i o n  of the c o m p a t i b i l i t y  of the input da ta  of the p r o b l e m ,  and it mus t  be  sa t i s f i ed  
in actual processes. 

We multiply Eq. (1) by w(y) and integrate over domain D 2. 

Using the notation 

T o(x, t) = .f T ( x ,  y, t) o~(y)dg, 
D2 

then 

(6) 

C (x, t) Tot - -  Vx ~, (x, t) VxTo -~ [}t~ (x, t) ,-( o~ (x, t)] T O = Qo (x, O. (7) 

After substituting (6), conditions (2)-(4) take the form 

Toll=o = % (x), Tolr ~ = [ (~, t), 

Oo) u=,l To ~ ~ (x, t), 

(8) 

(9) 

It follows from (9) that 

To ( x ,  t) = ~ (x, 0 .01) 
(io) 

If we substitute this expression into (7), we obtain 

- -  V 3 ~  (x, 0 V~7 + tt~, (x, t) 7 = q) (x, t), 
w h e r e  

(ii) 

(x, t) = (20 (x, t) Oo~ -~v (q) - -  ~ (x, t) 7 (x, 0 - -  C (x, t) w (x, O- 

Thus, we obtain a first order partial differential equation for the function ~(x, t). We seek the solution 

of this equation for DI - [0, i]. Then (ii) takes the form 

- - z~(x ,  t)7~(x, t ) +  ~(x, t)[~tv(x, t ) -  7~(x ,  t)] = CO(x, 0. (12) 

Hence it follows that the function Mx, t) is uniquely determined only if its value is given at one point of 

the interval [0, i]. We assume that the function Tx(X, t) vanishes only at the point x 0 ~ [0, I]. Then we obtain 

from (12) 

~(Xo, t ) =  (D(Xo, ~)bV(xo, t ) - - 7 ~  (Xo, t ) l - t  (13) 

The solution of Eq. (12) which satisfies (13) has the form [6] 

whe re 

x j z 

x o x0 Xo 

p (z) -- [7= (z, t) - -  ~7 (z, t)] ['7~ (z, 0]-1; 

R ( z ) =  O(z, t)[rz(z, 01-'; z~=xo. 

The right-hand sides of Eqs. (13) and (14) are assumed positive, continuous, and finite: 

In practice it is sometimes more convenient to replace (4) in problem (1)-(4) by the condition 

OT 

i. e., the heat flux density through the plane y = ~. 

(14) 

(15) 
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We now consider the problem of determining the function Mx, t) from conditions (1)-(3) and (15). 

After the substitution of (6) this system is transformed into the form of (7) and (S): 

= q (x, t). ~T~ ~ u=n 

We have from (7) and (16) 

C(x,t)  To , - -W q(x,t)  o ~ r  V~To + ~ ( x , t )  To = Qo (x, t) --  p~q (x, t) &o(q) 
, O v  . 

(i6) 

(17) 

Consequently, the function T0(x, t) is the solution of the mixed problem for the quasilinear parabolic 
equation (17) with conditions (8) and (9). We assume that q(x, t) > 0, dw/du 07) > 0, ~0(x) > 0, and f0 (~, t) > 
0. These assumptions can be ensured experimentally, and some of these conditions are also related to the 
compatibility of the input data of the problem. Then the function T0(x , t) > 0, and from (17), (8), and (9) it 

can be found exactly or approximately. Substituting the expression found for T0(x, t) into (16), we obtain 

-I 

If the coefficient k(x, t) is given, the coefficient C(x, t) or a(x, t) can be found from system (1)-(4) or 
from (1)-(3) and (15). 

We present a special case of the inverse problem considered above. 
the function (~(t) which is continuous in [0, rob] and satisfies the equation 

the initial and boundary conditions 

T t - -  A T  + a (t) T = O, (x, t) C ~'~1,, 

Suppose it is required to determine 

(18) 

(19) 

and the following supp lementa ry  condition 

TIt=o= q)(x), Tit, = 0 

~ -01 ,  t ) =  7(t), O < - ~ t ~ t e ~ ,  (20) 

where ~o(x) and Y (t) a re  given functions. This p rob lem is encountered in the study of the cooling of a body by 
a s t r e a m  of liquid or  gas ,  varying the veloci ty  o r ' t e m p e r a t u r e .  

Let D1 be a domain such that the Green ' s  function Gl(x, t; 6, 0) of the f i r s t  boundary value p rob lem for  
the equation T t - AT = 0 can be found in explicit  form.  For  example ,  D 1 can be a half  space ,  a sphere ,  a s eg -  
ment ,  etc. We make the substi tut ion 

t 
v(x, t)= r(x, t)~p{ j' ~(~)de} (21) 

0 

into Eqs.  (18)-(20), and af ter  some s imple  t r ans fo rma t ions  we obtain the following express ion  for  the un-  
known coefficient  ~(t): 

a ( t ) =  -~-d In 1 f 00~01' t; ~, 0)(p(~)d~. (22) 
dt ,~ ( t ) .  

Dt 

If in p rob lem (18)-(20) we speci fy  the condition (ST/3v)],F1 = 0 instead of the condition T I F2 
instead of (20) giving the condition 

= 0, then 

(23) 

(24) 

T0], t ) = f ( t )  

we find for the unknown coefficient a (t) the expression 

D, 

780 



TABLE i. Comparison of Exact and Approximate Values of the 
Thermal Conductivity 

x 
L 

o o,I  [ 0,2 I 0,3 0,4 0 , 5 [ 0 , 6  0 , 7 1 0 , 8 1 0 , 9 1  1 

f(x; 0,5) 
Z(x; 0,5) 

1,5 
1,5 

1,6 [ 1,7 1,8 
1,558 [1,684 1,787 

1,9 

1,891 

2 2,1 

2,006 2,105 

2,2 2,3 2,4 2,5 

2,200 2,296 2,402 2,5 

where  G2(x , t ;  {, 0) is the G r e e n ' s  funct ion of  the second boundary  value p r o b l e m  fo r  the equat ion T t - AT = 0. 

In conc lus ion ,  we cons ide r  the i nve r se  p r o b l e m  for  quas i l i nea r  hea t - conduc t ion  equat ions .  In this p r o b -  
l em we obtain an expl ic i t  e x p r e s s i o n  fo r  the coef f ic ien ts  being sought  by us ing s e l f - s i m i l a r  solut ions  of the 
equat ion under  cons ide ra t ion .  

Suppose it is r equ i r ed  to find the t h e r m a l  conduc t iv i ty  MT) > 0 when the fol lowing condit ions a r e  sa t i s f ied:  

(25) 
C (T) T t - -  x - i t  [Xtts (T)  T~]~ = O, 0 < x < oo, 0 < t ~ rob, 

Tlt=o = 0  , Tl,=0 = / ,  0 ~ < x < o o ,  0 < t ~ < t o b  ' (26) 

"TI,= n = q~ (t), ~ (0) = 0, , (o0) = )~, (27) 

Where C(T) > 0 and !P(t) are given functions; 7/ > 0, f > 0, k _> 0 are given numbers. In this problem X(T) is 

sought in the class of positive functions which are continuous for T~ [0, f]. For k = 0 Eq. (25) describes the 

propagation of heat in a one-dimensional rod, and k = 1 and k = 2 correspond to spherical and cylindrical 

symmetries. 

Equation (25)for conditions (26) admits a self-similar solution [7], and from the maximum principle 

there follows the estimate: 0 _~ T(x, t) _< f. It is easy to confirm that Eq. (25) and conditions (26) remain un- 

changed for the following transformation of independent variables: x ~ = rex, t' = m2t. Therefore, the function 

T(x, t) must satisfy the identity 

T (x, t) = T (rex, m2t). 

Setting m = (t7/2)-I/2, we obtain 

T ( x ,  0 = T (  x 
VY' 

Thus ,  T (x, t) depends only on the argument x/UgK 

1 --=w 

With the notation z = x/~-, system (25)-(27) takes the form 

z -~  [z% (~) wz]z = - -  I__ z~,12C (w) wz, 0 < z < ~ ,  
2 

(o) = L ~ (0o) = o, 

(z) = q~ (z-~-), 0 < z < ~ .  

(2s) 

(29) 

(30) 

Suppose the following conditions are satisfied: 

I) the expression 

I I 

i~ -2 (h+l) [~,(t)t '~3-k) ] ~ O-- C(q~ (0)) dO 

0 

for Vte [0, ~] is a strictly positive, continuous, and bounded function; 

2) ~(t) has the i nve r se  ,5(r  on [0, f] with a r ange  of  values  in [0, ~)o 

Then the e x p r e s s i o n  
I h~-I 

(T) ~12~Dr (T) [~ (T)] ~(3-h) i ~ = - C (v) ~' - dv  

o 

(31) 
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is  va l id  for  the  funct ion ~(T). H e r e  ~(0) is  u n d e r s t o o d  in the  s e n s e  of the  l i m i t  of  the  r i g h t - h a n d  s ide  as  
T ~ + 0 .  

By i n t e g r a t i n g  Eq. (28) in the  d o m a i n  (z,  oo) and t ak ing  accoun t  of b o u n d a r y  cond i t ion  (29) , we ob ta in  

Hence  

(w) = ~2 [2z%~]-~ i .~+~C (w) w ~ .  
z 

Subs t i tu t ing  into th i s  the  e x p r e s s i o n  for  w(z) f r o m  Eq.  (30), we find 

. d ] - i  
oD 

~h+lC (~ (~-~)) d~ 
z 

By s e t t i n g  L = z -2, 0 = ~-2, the  l a s t  e q u a l i t y  can  be w r i t t e n  in the  f o r m  

h-3 ~ ~+1 (32) 
(~) : ~2~ -~ [,~ (~)l-i .I 0 -' c (~ (0)) % (0) dO. 

0 

The funct ion ~(t) has  the  i n v e r s e  ~($).  T h e r e f o r e ,  we ob ta in  f r o m  (32) 

3 -__~_~ ~ h+l 
(,) = rl~(I), (,~) Iq)(*)]  9_ I c (v)v ~- dr.  

6 

H e r e  $ t a k e s  on a l l  va lue s  in the  i n t e r v a l  [0, f]. Conse que n t l y ,  the  v a l i d i t y  of  Eq.  (31) is  p roven .  

The  ana log  of the  i n v e r s e  p r o b l e m  (28)-(30) was so lved  in [5] by  s p e c i f y i n g  the  cond i t i on  T (x, tob) = $(x) 
i n s t ead  of  (30). 

Numerical calculations were performed on the model examples. We present one of them. Suppose it is 

required to find the thermal conductivity k(x, t) > 0 from the conditions 

T t - -  V)~ (x,  l) v T  == - -  (3 -~- 2t + 2x) sin ag, 0 < x, y, t < 1, 

Tit=0 = x 2 sin ~y, T[x=0 = t sin ~y, T[x=l = (1 + t) sin uy, 

Tlv=0 : T]u=I  = 0, i~Tvly=o : ~ (1 + x + t) (x z + t). 

Le t  X(x, t) be the  e x a c t  va lue  of the  t h e r m a l  conduc t i v i t y  and ~(x ,  t) i t s  a p p r o x i m a t e  va lue  found by  s u b s t i t u t -  
ing (17), (8), and (9) into Eq.  (16). In th i s  c a s e  h(x, t) = 1 + x + t ,  w(y) = s i n u y ,  Wy(0) = u. I t  fo l lows f r o m  (16) 
tha t  

(x, t) = (1~+ x + t) (x 2 + t) [To (x, t)l-'. 

The funct ion  T0(x, t) i s  the s o l u t i o n  of the p r o b l e m  

(33) 

To, - -  (q (x, l) (~To)~T~)~  = - -  (3 -}- 2x + 2/) -7 q (x, t), 

To]t=o = x z, Tolx=o = t, To]x=1 = 1 + t. 

Solv ing  th i s  p r o b l e m  by the  method  of [7], we ob t a in  an a p p r o x i m a t e  va lue  of the  func t ion  T0(x , t ) .  
s t i t u t e  t h i s  va lue  of T0(x, t) in to  (33), we find k0 x, t) .  

If we s u b -  

T a b l e  1 l i s t s  the  e x a c t  and a p p r o x i m a t e  v a l u e s  of the  t h e r m a l  c onduc t i v i t y  )~(x, t) fo r  t = 0.5 and at  the  
nodes  of the  net  {x: x + x i ,  x i = ih,  h = 0, i = 0, 1, 2 . . . . .  10}. 

N O T A T I O N  

t ,  t i m e ;  tob , o b s e r v a t i o n  t i m e  i n t e r v a l ;  D 1 and D 2 ,  d o m a i n s  in n - d i m e n s i o n a l  and m - d i m e n s i o n a l  E u c l i -  

d e a n  s p a c e s  E n and Era ,  r e s p e c t i v e l y ;  r 1 and r2 ,  b o u n d a r i e s ;  x = (x 1, x 2, . . . ,  x n) and y = (Yl, Y2, . -  �9  Yxv ), 
a r b i t r a r y  po in ts  in d o m a i n s  D 1 and D2; T ,  t e m p e r a t u r e  d i s t r i b u t i o n ;  C, v o l u m e t r i c  hea t  c a p a c i t y ;  ~, t h e r m a l  
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conductivity; ~, heat-transfer coefficient; Q, internal source strength; ~ and f, temperature distributions at 
beginning of process and on boundary of domain respectively; ~, outward normal to boundary F2; 7, temperature 
gradient; q, heat flux density; ~?, fixed point on boundary F2; D ---- DIXD2; ~ - DX(0, tob] , ~i - DiX(0, tob]. 

1,  
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3. 
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FINITE INTEGRAL TRANSFORMS FOR HEAT AND MASS 

TRANSFER PROBLEMS IN NONSTATIONARY AND 

INHOMOGENEOUS MEDIA 

V. S. Novikov UDC 536.2 

Several boundary-value problems of heat and mass transfer are solved for equations with vary- 
ing coefficients. 

Integral transforms are widely used in solving transport problems, mostly described by equations with 
constant coefficients. Important contributions in developing the method of finite integral transforms were 
made by Grinberg [i], Tranter [2], the authors of [3-6], etc. 

In the present study we construct finite integral transforms for several boundary-value problems of heat 
and mass transfer, described by equations with varying coefficients. Kernels and norms of the transforms 
and characteristic equations for finding eigenvalues are determined for these problems. In this case it is im- 
portant to develop an approach to solving these equations, as suggested by the present author [7]. 

Consider the problem 

a (t) f (r) --~ = b (t) -~r rv2~ (r) -f- b (t) q: (r) ~ + g (r, t) T -t- 1t7 (r, 0, 

[ aT ] 
r~Sl  

OT + a~T ]~=R= t3~ (t), 
k (r) Or 

(2) 

where a I, a2 are constant, and ~ = 0, i, 2 are shape coefficients of the geometric region. 
notation 

R2 

r vq) (pr) T (r, t) dr = "f (p, O, 
R~ 

We introduce the 

(3) 
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